Spatial Point Patterns :

@ Observed locations of events: datum is the location
e Major shift in interest from previous material!
e Up to now, location has been fixed point or fixed area,

@ Location arbitrary or happenstance, often controlled by the investigator
(where to take point samples)
o Random quantity has been the value at each location

@ Random quantity is now the location of an event
@ May record additional information at each location = marked point
process
o Sometimes small # of classes

e Examples: species of tree, live / dead plant, successful / unsuccessful
bird nest, disease case / not diseased person

e Or, may be continuous quantity

e Examples: diameter of tree, angle of a crystal

@ But that addn info only exists when there is an event at that location
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Duck nests in a 1/4 section of ND

o 0z 0.4 Eiles

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020



Potential questions

Q is intensity (# events / unit area) const. or vary. over the study area
@ how does intensity vary as function of potential covariates
e EX: does intensity of duck nests decline with distance to wetland?
© are events randomly scattered, clustered, or regular
e EX: are duck nests independently located in space, or do they cluster
near other duck nests, or do they avoid being near other nests?
@ how can we describe pattern at multiple scales?
© how can we describe rel. between two (or more) types of points?
e EX: do depredated nests tend to occur near other depredated nests?

@ how can we describe the cor. between marks as a function of
distance?

e when mark is a continuous value

e Historically, 3) was most important Q
@ Now, moving beyond to all the other Q.
e We'll begin with 3 and 4, then 5 and 6, end w/intensity
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Application areas

@ Many, including:
@ Ecology: historically important field of application, many different
applications, including:
o spatial pattern (random / clustered / avoidance) of a single species
o patterns of mortality (clustered or not?)

transportation: locations of accidents
neurology: locations of neurons
geology: locations of earthquakes (space, or space/time)

geography: do similar types of stores tend to cluster near each other?
epidemiology: do cases of a particular disease cluster?
e If so, suggests contagious disease or single spatial cause
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Examples in pictures:
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Amacrine cells, on

SN N

© Philip M. Dixon (lowa State Univ

Spatial Data Analysis

Part 6



Homogeneous Poisson Process =

Complete Spatial Randomness

6'\“3“(’*N\
3

vl ()JT CJ\ \,‘1&,@56_\ S o

@ imagine a very small are$ d@\mth P[event occurs in @ ()le_é

@ dA small enough that: ~— - l
o at most 1 event in dA \'-.l © {JE w\"'rC.\f\?.{—}
o most areas have 0 events/

o \= expected # events / unit area

° )\ is the intensity of the spatlal process r
f Two assumptions that give HPP = CSR = Candoan Exal A

° )\ constant over study Grea———
. o the outcome (0/1) in dA; is independent of the outcome in
|1 non-overlapping area dA,
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Homogeneous Poisson Processes

Some mathematical results: 7
Defme’Nj # pomts in area A (no longer small)

o Na~ Poiss(AA)  ~Ihen ST Q | \

o mean #: )\A—/ e ON- arla —
o var #: \A N W 7
o pmf PIX)| ] = € *_}5“0 |
examples: CSR, observe 196 obs on (0,10), (0,10)
Jadrat oo ox\mes Ny

Look at individual 1x1 quadrats =
e mean count per 1x1 quadrats
e Var count = 190 ij‘a e Q
e Histogram close to theoretlcal
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Ny _ij

o Clustered processes/pattern: points more likely to occur near other
points.

@ For quadrats, means that:

e some quadrats contain a cluster, have more points than expected
e other quadrats have no points

@ same mean, larger variance
—_—— e

@ for clustered process with 196 points on next two slides:
e mean = 1.96, variance = 4.70

J S
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A clustered process

© Philip M. Dixon (lowa State Uni

o ©Oo ?
o ) o
o © PP
o~ o © ° 0o%o
o o 8 00,00
0982 8 oo o 9
° & %
%0 00°?°
o @ ® 0%
o
° ©
%o %cgp o
® ° °°
8° % 8
oo 0
o 90: o ®
B 5 ° °
o6 o ©
o © o
0O
000%’6’ % °
Q0,0 00 2o %,
o0 o
o o o9 e ° el
%o @

Spatial Data Analysis

Spring 2020



° A

%* o~ %Me_ xS (GG

g < / a ?MS(\ >
= L moce barge 38
g _ t}

Number in 1x1 cell

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 16 /76



Regular processes

\G\k”
e f § - ne o
]"Ue’(ﬁ

o ety
| \\%3\“ owa=) whece

@ Plevent in dA] lower if dA close to another point N\ 2 e (Fn
/S

—I— d t “ tn H t - \

@ Tends to “space out” points = ?@Q 9@?3\.\_5
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Amacrine cells, on
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A better approach

Historically: Quadrats used extensively

But, very limited. Restricted to one specific scale (size of quadrat)

Better approach
e record locations of events, not just count in a box )
o usually all events in a predefined area ——. (omplete orwneiaian
e can be random sample of events —
o But, hard to take a simple random sample

e Can convert to quadrat counts, but can do a LOT more with (x,y)
data ’
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Summary functions

o Concept:
e measure something as a function of distance
@ Various choices of summary
e Distance to nearest neighbor (event - event distance)
e Distance to nearest point (point - event distance)
o Combination of these two
o Ripley's K function — |x5 2.0 + S
e pair correlation function

eeder
@ Each has uses
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Distance to nearest neighbor

L '
dwh 2T

. . H ? ™ e |
@ How close is each obs. to its nearest neighbor? L J _ TS

o clustering: NN distances tend to be small
o random (CSR): intermediate
e regular: NN distances tend to be large

@ Historical: calculate mean NN distance, compare to theoretical value

(Clark-Evans test) ¢ e \live Jdick b Sunslim S
o Current: estimate cdf of NN distance: G(x) = P[NN distance < x]

o for each event: find NN, calculate distance to .

o hard part is finding NN. Some fancy and fast algorithms (see NN
article)

e compare estlmated G(X) to theoretical G(x) for CSR Ry
—— A L BPe 3 &« 5§ NS

bM‘J"(_ (‘E’-‘rcez ll\ ‘Qs4&¢ces N O L;}—DS

2 - D —
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Theoretical CDF on NN distance

5% o P[D < x] ﬁ\l ?(?Xb VRN Oy N

.
~ e x Is distarice-of-concern,

e J\ is intensity (events per unit area)

o 7x2 is area of circle, radius x

o (For the statisticians). Nice ex. of CDF method fg
transforming a random variable
@ Define D = distance to NN dist.

G(x) = PD<x=1-F

= P[no obs in circle of radius x|

Ny ~ Poiss(\A), so: |
o Na ~ PoisM) 50 R

= S
PoOj = AT (f-\:ﬂ —
o
PID<x] = 1—e ™

I —

@ Similar ideas, different formula for 1D or 3D.
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Edge effects

-

@ Above assumes infinite plane

( T4
@ Real study areas have edges A
@ When a point is close to edgé_&"'rfrapped—-ate_a_ , What is-the-distance to
the NN? @M\N@
P
s e N

@ @ overestimate D.

o true NN may be just over the
boundary (close to event)

@ observed NN (inside study area) is
larger than it “should be"

@ So underestimate G(x) especially
@ for large x
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Edge effects

@ Three approaches to edge effects

@ 1) Ignore problem. — -
o Study area edge is a real edge (e.g. lake shoreline) IE |
o really care about distance to nearest valldﬁ/ent [ |

° -

2) Traditional: adjust ¢ estlmator :'
> s \
“edge-corrected” estimator of G(x) \ _____ R
Usual: use the F Kaplan-Meier estimator for censored data

others have been proposed, avoid reduced sample method

but, bias correction increases Var G(x)

e 3) Radical: adjust expectation

o Use uncorrected estimator
o Change theoretical G(x) to account for edge effects

If goal is to est. G(x), 2) much better

If goal is to test CSR (or some other process), 3) has higher power

Estimate theoretical G(x) by simulation
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clustering

@ More points close: shorter NN distance

0.8

= P
T s s 1Y
L) . ° 7 .
] . 9 — Gl
. ., ° N - = Buuld)
.o S e . s X Kﬁ".’@ ) |
o« o g ° = Gl
o 0 0L e, Gonslr)
- “ o ° . o
o o . o S ——
. e o b ° T T T
b . o .-. . o *o°° 0.00 0.02 034 0.06
[ ] ]
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inhibitation / regularity

@ Fewer points close: longer NN distance

@ Hard core process: no points within a minimum distance

P )
/v

(N
\J
6()

. ¢,<K€
z&"‘
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Sampling variance of G(x)

e How to calculate Var G(x)?

© Quite a hard problem: 1) edge effects

2) “Reflexive NN's":

e same NN distance

o surprisingly common: P[reflexive] = 0.63 for CSR

pair of points
o Bis A's NN, Ais B's NN

o increases Var G(x) — i

e Var G( ) has been derived under CSR, ignoring edge effects

—
@ Now, almost always computed by simulation

-

Simulate a realization of null hypothesis process (e,g. CSR)

Repeat simulate/estimate 99 or 999 times
Calculate Var G(x) at various x

[}
o Estimate GA(x!
(]
(]

@ Or go straight to a confidence interval

o Calculate0.025 and 0.975 quantiles of G(x) at a specified x value

e repeat for various x’s

\J o 6\‘09»’\

{'\Sc\m%\

o G

cse
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Cypress trees
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Point-event distance = empty-space function

G gt o=
o cdf of distance from randomly chosen point (not an event) to nearest

event % E@al\&,{/ oot < ?4]
Usually denoted F(x)

e,

Under CSR, ignoring edge effects: F(x)=1—
T— —_—
o same derivation as for G(x)

But now:

o large distances éﬁlruw.,
because big areas of empty space
e small distances = regularity
—_—

Evaluated in same way as G(x) ~

F(x) more powerful than G(x) to detect clustering

G(x) more powerful to detect regularity
R
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Baddeley's J function

e Can combine F(x) and G(x)

Interpretation:
o clustering: J(x) < 1
o CSR: J(x) =1
o ‘regutarity: J(x) > 1
Much newer than F(x) or G(x): 1996 paper

@ Few have much experience with it
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Looking at multiple scales simu

-+
Tr’ L‘\?L} [\Gﬁv(ca’)( 06~

GLP
@ I've emphasized nearest neighbor (of an event, of a point).
o closest event (to the event, to the point)

@ e Straightforward extension to 2nd NN (next closest) , 3r

o Gets harder to interpret
e and you have a separate plot

@o Rethink how to compute™the summary

o Instead of “how/far to closest point”
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Ripley’s K function

e Like F(x), G(x), and J(x), looks at 2nd order characteristics of a
point pattern

@ Now, the most commonly used point pattern analysis function

@ Provides information at multiple scales simultaneously

Vn
W'K(X) XE (#ie%/ents w/t x of an event)

smaller
o Regularity: K(x) small or 0 at short distances.
@ Notes: -
o K(x) can detect clusters of regularly spaced points
e i.e., different patterns at different scales N
e but it is cumulative (number of points within distance x
o we'll see a refinement, the pair correlation function, that looks at
points at distance x
o which simplifies (greatly) inferring the scale of a pattern

S
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K(x) underc___‘__gS::F\Z=

o Expected value, E K(x):

o Under CSR, events are i endent, E # in area A= )\A
o E K(x) = E # in ared nx2/\ = A\rx? /) = 7x? -
—_—
e Variance, Var K(x):
o Var # in area A= )A mk’lﬁh
e so, Var K(x) —ar # in mx2 Cg@ K “Trjl\
0 = K:Z/)\
o smaller with more expected points (larger )
]

increases with distance, x

—_—
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Besag's L function

@ L(x) is a variance equalizing transformation
if Y ~ Poiss(X/3), then V'Y has constant variance
— [ — _

Besag's original version

L= VEC/T e =TT

o Wiegand and Moloney (2014) call this Ly(x)
Under CSR: L(X)M approx constant.
| prefer L*(x) = L(x) —x

e Wiegand and Moloney (2014) call this Ly(x)

Nice feature of L* = L»(x): undef CSR, F(;Y: 0
| believe plots of L* are much clearer (but you decide which you
prefer)
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Clustered
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e K(x) and L(x) are cumulative measures
o Based on number of events within x of another event
@ What if you want to describe association at distance x?
o Closer to intuition about spatial scale ——
e Can untangle multiple processes
o inhibition at short distances
o clustering at large distances
@ pair-correlation function, g(x) or p(x)
1
X) = -
g(x) 77%)
e C S
o under CSR (K(X) = mx ) 7 = 2mx, and g(x) =1
g(x)>1 -1 = events more likely AT d|stance X than under CSR =

clusterlng at a scale of x
g(x) < 1= events less likely AT distance x than under CSR =

repulsion at a scale of x 25 TS s
e range is (0, o) with 1 as the neutral poinyl D = C(\\{" '
e so often log transform: evaluate log g(x) /—_) 2 ;/-7()'/5

Spring 2020 49 /76
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Estimators of g(x)

@ g(x) is much harder to estimate than K(x)

o K(x) is a sum (# events within distance < x)
. . _— .
o ‘g(x) depends on 0/1 variable: is there an event at distance = x or not

o “parallel to the issue that a cdf: P[X < x] is easier to estimate than a
pdf: f[X = x] —

@ Two proposed estimators: {m
e Wiegand and Moloney “O-ring” estimator®staussdgdvithin (x, x +_‘d___>g)_

equivalent to binning obs. to make achistogra -

_~— o kernel smoothing: much better (both Tqr density estimation)and g(x))
'_7 e What is the histogram of 5,10,11,11, 12,7167

@ choice of “bin width” really matters
| s Vol
@ see next two slides

—
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Histor/@ram with wide categories
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Historgram with narrow categories
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Kernel smoothing

@ Histograms estimate probability density for a range of X using only
the values in that range
@ the variance in the estimated probability depends on the number of

obs in the bin
o wide bin: many points, low variance, but biased estimate (one number
for many X values) )

e narrow bin: low bias (small range of X values), but large variance (few
it —_

obs i bin) =
@ Density estimation partially avoids this tradeoff and is less dependent
on the breaks between categories H;l:'a\og,ﬂ oy gm‘l\
@ Concept: superimpose little “bumps” of probability around each obs®

Add up the probability to estimate f(x) m

result depends o@)f each “bump”
sd called “bandwidth”

result also depends on “kernel”, i.e. the shape of the bump
notice that range of density estimate is wider than data range.

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 53 /76



7o) o
— N
= = °
z 3 A z
o
[«5) [«5) —
= T} o = L
2 1/
2 UU S 44~
o ) T 3 o E\F T I
6 8 12 16 5 10 15
N =6 Bandwidth = O o7 N =6 Bandwidth = 0.7(
-~
N
\—! —
. —
— ©
© 2
= 2 7 = ©
<5} < <5} S |
@] o a 3
S e
o o
S [ -
o o I I I Ty LY
O 5 10 20 O 5 10 20
e -

6 Bandwidth = 2.1:

N =6 Bandwidth =2.11

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 54 /76



log(g(r))

k T T T T
0.00 0.05 0.10 0.15 0.20 0.25

0.10 0.15 0.20 0.25

Philip M. Dixon (lowa State Uni Spatial Data Analysi



1

log(g(r))

L=
0.02 0.03 0.04 0.05 0.06

b

-0.01 0.00 0.01

B T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

Philip M. Dixon (lowa State Uni Spatial Data Analysi



inhibition
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Interpreting / using measures

m.»[—f;elp_ Tf‘l’/‘ﬁ“j ’
@ 1) to test CSR: pointwise tests

estimate L(x) at a range of distances, x
use simulation to calculate point-wise quantiles of L(x)
plot L(x) and simulation envelope
interpret deviations above and below expected
consider distance xj, then distance x,
called pointwise-tests.
Type | error rate, « level, correct for one test
One issue (serious): multiple testing
o doing many tests, one at each distance
P[reject — CSR at any distance] is much larger than P[reject — CSR]
especially for cumulative summary functions, K(x) and L(x)
Quite hard to do a true level o test R R
usual approaches don't work well because L(x1) and L(x>) are correlated
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Interpreting / using

@ 2) summary tests of CSR Lo
o Calculate a summary statistic across “relevant” range of distances
e Two common choices, using L(x) as example:

o 5= max[| L(x) — L(x) \] (maximum statistic, Maximum Absolute
Deviation)" 4,5 P
o s=/ [L(x) — L(x)]? (integral statistic, Loosmore and Ford test)
o Both computed by evaluating “interesting” set of x, finding max or sum
o L(x) can be theoretical expectation (K(x) = x2, Ly(x) = 0)
e Or, L(x) computed as average of n simulations (see below)
@ accounts for bias due to edge corrections

o Integral better when consistent but small deviations above expected
| curve D —

( @ more commonly used

e Max better when large excursion from theoretical value for a small
“range of distances
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Summary tests

@ Turning into a hypothesis test

e Have s,ps from the observed pattern

o Simulate many (39, 99, 999) random patterns under HO (e.g., CSR)

o Calculate summary statistic for observed data and each simulated data
set

o Calculate P[as or more extreme summary statistic] = p-value

o Usually one-sided definition of more extreme (only care about large s)

@ This avoids multiple testing issues and gives valid p-value
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Summary tests: Cypress pointwise tests
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Summary tests: Cypress summary tests
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Summary tests

@ Need to choose upper and lower distances
o best when chosen to be biologically relevant.
e DON'T look for the most significant region
@ most commonly used to test CSR
e But you specify the null hypothe5|s
o same approach can be used for any point process model (examples
coming soon)

@ The integral and especially the maximum statistic assume Var L(x)
approximately constant —

Don't use K(x): because Var K(x) is definitely not constant

o Use L(x) instead, approximately constant variance

e But not perfect (see next two plots)

o Can transform G(x) or F(x) (both proportions), e.g. sin~* G(x)

@ There are studentized summary statistics, if unequal Var is bad
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A poor use of a test of CSR

) —~
@ Until a few years ago, it was fashionable to
e map locations of all things in an area. Usually trees or other plants,
could be animal nests
e usually many species
o for each species, test CSR (usuallyusing K/L functions) -~
o tabulate # species that are clustered, # random,l# regular |

Pt -
@ then make ecological conclusions about the communlty el /AL
T L)/,\I N

e /_ {:‘-’u'» - 0
@ do you see the issue here? 7 1 (505 ,] Y.
/
) (L — ND ALK
J/_\I { ’O\" (;LLJ‘L/‘{( ‘b,( L /)( Al _f . . ;
2 W e\amee
V\(“(o\.l T |-‘ ‘\r\? \(_-; WAL
ﬂe Jn Gmge 528
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A poor use of a test of CSR

If you don't reject HO: CSR for a species, do you know that species is
randomly distributed?
What if you only had 10 individuals for that species?

e Statistical power to detect 'not-CSR’ is really small

failure to reject HO does not = HO is true

@ In my experience (mostly with trees)

o large # events: detect clustering, sometimes regularity 1 fob\;ﬂ.a o
o small # events: accept HO T
Ma’ 77 SV

p—

. . ’H—‘_-___-_-__— .
If you expect intensity to vary over a study area, that introduces
clustering.
If you believe that non-random spatial patterns are the norm, the

hypothesis test is really telling you only whether you have a
sufficiently large sample size to detect that non-random pattern.
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Interpreting / using measures

;\\4@5
@ 3) Estimating # “excess events{%

o if pattern is CSR, expect Amx?_events within radius x of another event
o data says anaverage of AK(x) events within radius x of another event

© AR(x) — Amx? fis averagéexcess events’ -

° Ld?aﬁ%ﬁ?g/mtud’e of clustering in subject- matter terms

o less frequently used\is 'fr(;} —1 0 —= ?(T_’K
proportion of excess e Istance x

@ Cypress tree illustration

o A =08/(50 x 200) = 0.0098
e at distance of 10m, K 488 B

ave. of 4.7 cypress trees within

excess cypress trees within 10m of another.
e Or, ‘3“132? 1 =0.55 = 55% more cypress trees within 10m of another.
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Interpreting / using measures

@ 4) Describing spatial scale(j‘C?Q\ S Co Ctd

e ‘“scale” is a tricky concept. Various definitions

o Here, scale = distance(s) at which events repulse each other or attract
each other

o A distance-specific concept

o Many studies have used K(x) or L(x) to estimate scale, e.g. find x
where L(x) is most different from theoretical value

@ Increasingly understood to be wrong
o Both K(x) and L(x) are cumulative functions: # points within circle of
radius x
o Small # at distance x may be because repulsion (fewer pts.) at
distances < x, even if strong clustering at x

@ Really want to know what is going on AT distance x, not < x
—

@ Use pair-correlation function
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Interpreting / using measures

@ 5) How precise is L(x) or g( )?

o Not the width of the Null hype hypothesis envel

e Precision of L(x) or g(x) o
. aJ .
o Certainly depends on N = # points d\@e(o'- 5 %w\ﬁ}“w
o But also on the spatial pattern "T }

: St patterh e
e K(x) more variable for clustered patterns Q)/\6 L QQ

—_—

o If you know the true spatial pattern, simulate from that pattern and

calculate envelope
P e eslwa JFIRENS
@ If you don’t know the true pattern use a bootstrap/

@ Point pattern bootstrap proposed by Loh, 2008
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General method for estimating precision of a statistic

Uses resampling the data to approximate the unknown sampling
distribution of a statistic o

Gives you the se of a statistic or a Mor a statistic

Cl much more common
Not the same as a randomization test or a null hypothesis test
e Hypothesis test: simulate / resample assuming HO (CSR, no diff. in
_— e

—_—
means)

o Bootstrap: simulate / resample assuming Ha (arbitrary pattern,
non-zero diff) —

Extremely useful tool for “difficult” problems 'Ja ot |\}3J'OJ_“)
Usual forms of bootstrap don’t work for point pattern data

Problem is that one point contributes to many _L(x)
Loh devised something that (so far) is acceptable sometimes

e resample contributions to g(x) or L(x)
Issues when bootstrap average curve not same as data curve (see
below)
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Cypress L(x) bootstrap

™ —

CSK
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Cypress L(x) CSR (null) envelope
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Cypress g(x) bootstrap
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Cypress g(x) CSR (null) envelope
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